The level 1 weight 2 case of Serre ’ s conjecture Luis
نویسندگان
چکیده
We prove Serre’s conjecture for the case of Galois representations of Serre’s weight 2 and level 1. We do this by combining the potential modularity results of Taylor and lowering the level for Hilbert modular forms with a Galois descent argument, properties of universal deformation rings, and the non-existence of p-adic Barsotti-Tate conductor 1 Galois representations proved in [Di3].
منابع مشابه
2 2 Fe b 20 05 The level 1 weight 2 case of Serre ’ s conjecture Luis
We prove Serre’s conjecture for the case of Galois representations with Serre’s weight 2 and level 1. We do this by combining the potential modularity results of Taylor and lowering the level for Hilbert modular forms with a Galois descent argument, properties of universal deformation rings, and the non-existence of p-adic Barsotti-Tate conductor 1 Galois representations proved in [Di3].
متن کامل4 The level 1 weight 2 case of Serre ’ s conjecture Luis
We prove Serre’s conjecture for the case of Galois representations with Serre’s weight 2 and level 1. We do this by combining the potential modularity results of Taylor and lowering the level for Hilbert modular forms with a Galois descent argument, properties of universal deformation rings, and the non-existence of p-adic Barsotti-Tate conductor 1 Galois representations proved in [Di3].
متن کاملThe level 1 case of Serre ’ s conjecture revisited Luis
We prove existence of conjugate Galois representations, and we use it to derive a simple method of weight reduction. As a consequence, an alternative proof of the level 1 case of Serre’s conjecture follows. 1 A letter with the results Barcelona, April 21, 2007
متن کامل3 M ay 2 00 7 The level 1 case of Serre ’ s conjecture revisited
We prove existence of conjugate Galois representations, and we use it to derive a simple method of weight reduction. As a consequence, an alternative proof of the level 1 case of Serre’s conjecture follows. 1 A letter with the result Barcelona, April 21, 2007
متن کامل2 00 7 The level 1 weight 2 case of Serre ’ s conjecture
We prove Serre’s conjecture for the case of Galois representations of Serre’s weight 2 and level 1. We do this by combining the potential modularity results of Taylor and lowering the level for Hilbert modular forms with a Galois descent argument, properties of universal deformation rings, and the non-existence of p-adic Barsotti-Tate conductor 1 Galois representations proved in [Di3].
متن کامل